
International Journal of Computer Trends and Technology Volume 72 Issue 9, 126-130, September 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I9P119 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Modern Trends in No SQL Data Bases

Saravanan Subramanian1, Subhash Saravanan2

1Sr Manager, Software Development, Amazon Web Services Inc, Seattle, Washington, USA.
2Computer Science, University of Washington, Washington, USA.

1Corresponding Author : subrasar@amazon.com

Received: 02 August 2024 Revised: 31 August 2024 Accepted: 24 September 2024 Published: 30 September 2024

Abstract - The exponential growth of data in the digital age, fueled by social media, smartphones, and cloud computing, has

exposed the limitations of traditional Relational Database Management Systems (RDBMS) in managing the velocity, volume,

and variety of data. This has led to the rise of NoSQL databases as a viable alternative. This article provides an overview of

NoSQL databases, highlighting their key properties and various types, including key-value, column-oriented, document-oriented,

and graph databases, along with their respective data models. Additionally, it discusses potential limitations such as restricted

ACID transactions, proprietary APIs, and the trade-offs involved in the CAP theorem.

Keywords - NoSQL, RDBMS, Open Source, Data Bases, Big Data, Gen AI, Large Language Models (LLM), Vector.

1. Introduction
Relational Database Management Systems (RDBMS)

have been the cornerstone of data management for nearly three

decades. However, the rapid evolution of technology,

characterized by the advent of social media, smartphones, and

cloud computing, has led to the generation of large volumes

of data at unprecedented velocities. This data ranges from

simple text messages to high-resolution video files, presenting

a significant challenge for traditional RDBMS. These systems

struggle to cope with the velocity, volume, and variety of

modern data, revealing a critical research gap in their ability

to manage and process such diverse datasets efficiently.

Additionally, most RDBMS software is licensed and requires

enterprise-class, proprietary hardware, further limiting their

accessibility and scalability. This gap has paved the way for

the emergence of open-source NoSQL databases, which offer

dynamic schemas, distributed architecture, and horizontal

scalability on commodity hardware, addressing the limitations

of traditional RDBMS in the current data landscape.

2. Properties of NoSQL
2.1. Dynamic Schema

NoSQL databases offer schema flexibility, allowing

developers to add new columns dynamically. Rows within

these databases may or may not contain values for these

columns, and there is no strict enforcement of data types [2].

This flexibility proves advantageous, especially when

anticipating frequent schema changes during a product’s

lifecycle.

2.2. Variety Of Data Types

NoSQL databases can support various types of data. The

system enables the storage of structured, semi-structured, and

unstructured data. It allows for the storage and manipulation

of log files, image files, video files, graphs, jpegs, JSON, and

XML in their original format, with no need for pre-

processing [2]. As a result, it minimizes the requirement for

ETL (Extract, Transform and Load).

2.3. High Availability Clusters

NoSQL databases enable distributed storage through the

utilization of commodity hardware. It ensures high availability

by expanding horizontally [2]. NoSQL databases can leverage

the flexible capabilities of Cloud infrastructure services

through this feature.

2.4. Open Source

NoSQL databases are often open-source licensed. The

software is available for free, and developers can use a

majority of them in commercial products at no cost. The open-

source codebases offer flexibility in adjusting and tailoring to

meet the demands of businesses [2]. Although most open-

source licenses are available for free, there are subtle

variations in their usage for commercial purposes on a larger

scale.

2.5. API Access

NoSQL databases not only rely on SQL for data retrieval;

they also provide rich API interfaces for performing DML

(Data Manipulation Language) and CRUD (Create, Read,

Update, Delete) operations [2]. These APIs are more

developer-friendly and are supported in a variety of

programming languages.

3. Variations of NoSQL Databases

There are several types of NoSQL databases, including

Key-Value databases, Column-oriented databases, Document-

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Saravanan Subramanian & Subhash Saravanan / IJCTT, 72(9), 126-130, 2024

127

oriented databases, and Graph databases. Most NoSQL

databases share similarities with Relational Database

Management Systems (RDBMS) in terms of their data

models. Within a database server, there can be multiple

databases, each containing one or more tables. These tables

consist of rows and columns to store actual data. While this

hierarchy is common across all NoSQL databases, the specific

terminologies may vary.

3.1. Key Value Pair Database

Key-value databases are a product of the research

presented in the Dynamo whitepaper published by Amazon

[3]. The Key-Value database enables users to store data in a

straightforward <key>:<value> format, where the key helps to

retrieve the value. These are very simple data stores but

optimized for faster retrieval.

Data Model: The table contains many key spaces, and

each key space can have many identifiers to store key-value

pairs.

The key space functions as a column in a typical RDBMS,

and the group of identifiers presented under the key space are

analogues to the non-primary key values of the same row.

This structure is suitable for building simple, non-

complex, highly available applications since most of the Key

Value Databases support in-memory storage and are used for

building cache mechanisms.

Examples: Amazon DynamoDB, Redis

Fig. 1 Diagram of key-value pair database

3.2. Column Oriented Database

Google’s white paper on Bigtable introduced column-

oriented NoSQL databases, which diverge from the

conventional relational model [4]. In these databases, columns

can be dynamically added, resulting in wider tables. To

manage this breadth, columns are grouped into a ‘Column

Family’ or ‘Super Column.’ While the use of Column Families

is optional in some databases, they prove valuable for handling

sparsely distributed values—such as those encountered in

medical research projects.

Data Model: The table contains column families

(optional). Each column family contains many columns. Key-

value pairs might sparsely distribute the values for columns.

Examples: HBase, Apache Cassandra

Fig. 2 Diagram of column-oriented database

Table

Key Space Key Space

#id1 { Key: Value, Key: Value #id2 {Key: Value, Key: Value
#id3 {Key:[Value1, Value2,

Valu3,Value4]

Table

Column 1

Column Family 1 Column Family 2 Column Family 3

Column 1 Column 3 Column 4

#1 (Key: Value, Key:

Value

#2 (Key: Value, Key:

Value

#1 (Key: Value, Key:

Value

#1 {Key: Value, Key:

Value

#2 (Key: Value, Key:

Value)
#2 {Key: Value, Key:

Value}

#2 {Key: Value, Key:

Value}

Saravanan Subramanian & Subhash Saravanan / IJCTT, 72(9), 126-130, 2024

128

3.3. Document Oriented Data Stores

Document-oriented databases are designed to store semi-

structured data in various formats, including JSON, XML,

YAML, and even Word documents [4]. In these databases, a

document acts as the unit of data, similar to a row in a

relational database management system. A group of these

documents is organized into a “Collection,” which is

analogous to a table in relational databases.

Data Model: The Database encompasses a multitude of

collections. A Collection comprises many documents. Each

document may contain a JSON, XML, YAML, or even a

Word Document. Document databases are well-suited for

web-based applications and applications that expose RESTful

services.

Examples: MongoDB, Couchbase

Fig. 3 Diagram of a document-oriented database

3.4. Graph Database

In real-world applications, a graph comprises vertices and

edges, which are referred to as nodes and relationships in

graph databases [6]. These databases facilitate the storage and

execution of data manipulation operations on nodes,

relationships, and their associated attributes. Graph databases

demonstrate enhanced performance with directed graphs,

where explicit relationships exist between nodes.

Data Model: The graph database serves as a two-

dimensional depiction of the graph. The graph can be

compared to a table. Each graph consists of columns for Node,

Node Properties, Relation, and Relation Properties. Each row

of these columns will contain corresponding values. The

columns in properties can contain key-value pairs. Graph

databases are well-suited for addressing social media and

network challenges that involve complex queries and multiple

joins.

Examples: Neo4j, Amazon Neptune, ArangoDB,

OrientDB.

Fig. 4 Diagram of graph database

Collection

Collection

Collection

Document#1 Key:

Value

Document#2

(Key: Value, Key:

Value }

Document#3

[Key: Value]

Document#4 Key:

{Key: Value, Key:

Value}

Database

Graph

Node Id A

Labels / Properties Relations Relation Properties

{Key: Value, Key:

Value, Key Value)
Node Id B

{Key: Value,

Key: Value}

Node Id A

Node Id B

(Key, Value,

Key: Value}
Node Id C {Key: Value)

{Key: Value} Node Id A
(Key: Value,

Key: Value}

Saravanan Subramanian & Subhash Saravanan / IJCTT, 72(9), 126-130, 2024

129

3.5. Time Series Database

A time-series database is designed to handle time-

stamped data, such as metrics, sensor readings, and logs [7].

These databases manage, retrieve, and analyse large volumes

of data points indexed by time, facilitating expedited queries

and real-time analytics. They are capable of handling high

ingestion rates and offer advanced functionalities for time-

based queries, including aggregations, down-sampling, and

sliding windows. Time-series databases employ data

compression techniques to minimize storage requirements and

enforce default data retention policies. They are extensively

used in monitoring, IoT, and financial applications, enabling

the tracking and analysis of trends over time with exceptional

performance and scalability.

Data Model: In a time-series database, the data model is

constructed based on time-stamped data points, and then it

groups them into time series. Each series contains relevant

metrics, tags (metadata), and fields (values). Timestamps

serve as unique identifiers for the recording time of data.

Examples: Prometheus, InfluxDB, Amazon Timestream

3.6. Vector Database

A vector database handles the storage, indexing, and

searching of high-dimensional vector embeddings, which

serve as numerical representations for data items like text,

images, or audio [8]. In recent days, the use of vector

databases in Generative AI products, along with LLM (Large

Language Models), has increased. The vector databases store

the data to enable the semantic meaning of the data. They

excel in similarity searches, so they are primarily used in

recommendation systems, natural language processing and

computer vision. They also handle high-volume, large-scale,

complex data using advanced indexing techniques.

Data Model: The data model of the vector database

includes vectors, unique identifiers, metadata, and optional

index. A vector is an array of numbers representing feature set

data. Unique Identifier to map each vector to allow faster

retrieval and association with metadata. Metadata holds data,

labels, categories, timestamps, and more. Additional indexes

optimize database search and retrieval.

Examples: Pinecode, ElasticSearch, Qdrant

3.7. Search Optimized Database

Search-optimized data stores handle complex search

queries efficiently. These data stores index the data to

facilitate fast retrieval and complex searches like full-text,

patterns and filters [9]. These stores optimize query

performance by using inverted indexes to map to documents

and supporting ranking algorithms to prioritize relevant

results. These are suitable for building search engines, e-

commerce platforms, and content management systems. The

search-optimized data stores such as Apache Solr and Open

Search leverage advanced search algorithms along with

search-optimized data structure and low latency data storage

systems.

Data Model: The search-optimized stores contain several

key components in their data model. The data is stored in an

index. Each record in the index is called a document, and a

document contains multiple fields. Also, an inverted index

that maps keywords in the document in which they appear to

enable fast full-text search.

Examples: Apache Solr, Elasticsearch, and Amazon

Cloud Search.

3.8. Multi-Model Database

A multi-model database can accommodate various data

models within a single database system, including relational,

document, key-value pair, columnar, and graph models. This

flexibility allows software developers to choose the most

appropriate data model for their specific business use case,

regardless of the underlying data store system. Additionally,

multi-model databases offer a unified query language capable

of handling diverse data types stored within the same system.

By managing different data types in one place, multi-model

databases simplify application management and eliminate the

need for multiple databases.

4. General Vs Purpose Built Databases
4.1. Standard Data Bases

Relational databases, such as MySQL and PostgreSQL,

are standard, general-purpose systems. They manage diverse

applications and data types using a structured, table-based

schema and support SQL querying. However, these databases

may not be as efficient as purpose-built systems for

specialized tasks due to the lack of optimization for specific

workloads, leading to performance inefficiencies. Scaling

relational databases to handle big data or high transaction rates

is complex and resource-intensive. Additionally, adapting to

changing data structures is challenging because of the rigidity

of schemas. General-purpose databases also lack specialized

features and advanced indexing capabilities, which can affect

their efficiency for certain tasks.

4.2. Purpose-Built Data Bases

Purpose-built databases deliver optimized performance

and specialized features to meet specific use case requirements

cost-effectively. For example, InfluxDB is a specialized

database system that excels in handling time-stamped data,

whereas Neo4j focuses on managing complex data

relationships.

4.3. Challenges

To select a purpose-built database for a specific use case,

it is important to consider several critical factors. Lack of full

ACID transaction support in NoSQL databases (e.g.,

MongoDB, Couchbase, Cassandra) can compromise data

integrity in applications that require strong consistency.

Saravanan Subramanian & Subhash Saravanan / IJCTT, 72(9), 126-130, 2024

130

Limited SQL support and proprietary APIs cause learning

unique query languages and creating custom adaptors.

Relational databases have JOIN as a core feature, unlike many

NoSQL databases. Finally, CAP theorem trade-offs are

inherent in NoSQL databases, as they typically prioritize only

two of the three properties—Consistency, Availability, and

Partition Tolerance—requiring careful consideration of

application requirements.

5. Conclusion
The exponential surge of big data, driven by

advancements in social media, mobile computing, and cloud

technologies, has highlighted the inadequacies of traditional

RDBMS in handling the velocity, volume, and variety of

modern data. NoSQL databases have emerged as an

alternative, offering dynamic schemas, diverse data type

support, high availability, and open-source accessibility.

These paradigms provide specialized data models for various

applications, allowing developers to choose the most suitable

database technology for their needs rather than relying on a

one-size-fits-all relational model. Despite their advantages,

NoSQL databases come with trade-offs. Selecting a NoSQL

solution requires careful consideration of application needs

due to reduced ACID support, proprietary APIs, and

challenges posed by the CAP theorem. An optimal data

management strategy may involve a combination of both

relational and NoSQL approaches. NoSQL databases are

evolving to address their limitations by leveraging cloud

technologies and incorporating features of traditional

RDBMS.

Funding Statement
The authors solely manage the funding through their

own sources, with no financial support received from

external organizations.

Acknowledgments
Saravanan Subramanian and Subhash Saravanan

contributed equally to this work.

References
[1] Neha Bansal, Kanika Soni, and Shelly Sachdeva, “Journey of Database Migration from RDBMS to NoSQL Data Stores,” Big-Data-

Analytics in Astronomy, Science, and Engineering, vol. 13167, pp. 159-177, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Stefanie Scherzinger, and Sebastian Sidortschuck, “An Empirical Study on the Design and Evolution of NoSQL Database Schemas,”

Conceptual Modeling, pp. 441-455, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Giuseppe DeCandia et al., “Dynamo: Amazon’s Highly Available Key-Value Store,” ACM SIGOPS Operating Systems Review, vol. 41,

no. 6, pp. 205-220, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[4] Fay Chang et al., “Bigtable: A Distributed Storage System for Structured Data,” ACM Transactions on Computer Systems (TOCS), vol.

26, no. 2, pp. 205-218, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[5] Mateusz Papiernik, and Mark Drake, An Introduction to Document-Oriented Databases, DigitalOcean, 2021. [Online]. Available:

https://www.digitalocean.com/community/conceptual-articles/an-introduction-to-document-oriented-databases

[6] Graph Database Concepts, Neo4j, 2024. [Online]. Available: https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/

[7] Time Series Database (TSDB) Explained, Technical Paper, InfluxData, 2023. [Online]. Available: https://www.influxdata.com/time-

series-database/

[8] Vector Database, AI Skills Challenge, Microsoft, 2024. [Online]. Available: https://learn.microsoft.com/en-us/azure/cosmos-db/vector-

database

[9] Sanket Sharma, Mastering the Art of Optimizing Complex SQL Queries, DEV Community, 2023. [Online]. Available:

https://dev.to/thesanketsharma/mastering-the-art-of-optimizing-complex-sql-queries-4ii5

https://doi.org/10.1109/POWERCON.2016.7753989
https://scholar.google.com/scholar?cluster=9001867171681429382&hl=en&as_sdt=0,5&scioq=Attribution,+emotion,+and+action
https://link.springer.com/chapter/10.1007/978-3-030-96600-3_12
https://doi.org/10.1007/978-3-030-62522-1_33
https://scholar.google.com/scholar?cluster=1168391571096308741&hl=en&as_sdt=0,5&scioq=Attribution,+emotion,+and+action
https://link.springer.com/chapter/10.1007/978-3-030-62522-1_33
https://doi.org/10.1145/1323293.1294281
https://scholar.google.com/scholar?cluster=5432858092023181552&hl=en&as_sdt=0,5&scioq=Attribution,+emotion,+and+action
https://dl.acm.org/doi/10.1145/1323293.1294281
https://doi.org/10.1145/1365815.1365816
https://scholar.google.com/scholar?cluster=535416719812038974&hl=en&as_sdt=0,5&scioq=Attribution,+emotion,+and+action
https://dl.acm.org/doi/10.1145/1365815.1365816
https://www.digitalocean.com/community/conceptual-articles/an-introduction-to-document-oriented-databases
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/
https://dev.to/thesanketsharma/mastering-the-art-of-optimizing-complex-sql-queries-4ii5

